
Navigation and Ancillary Information Facility

N IF

Making a CK file

November 2014

Navigation and Ancillary Information Facility

N IF

Making a CK File 2

•  SPICE provides means to create CK files, either by packaging
orientation computed elsewhere or by first computing
orientation and then packaging it in a CK file

•  Packaging of already existing orientation data can be done in
two ways:

–  Use SPICE CK writer routines by calling them from within your own
SPICE-based application

–  Convert a text file containing attitude data to a CK using the Toolkit’s
msopck program

•  Computing as well as packaging orientation can be done in
two ways:

–  Use SPICE geometry routines and CK writer routines by calling them from
within your own SPICE-based application

»  Constructing attitude using SPICE routines is not discussed here
–  Convert orientation rules and schedules to a CK using the prediCkt

program available at the NAIF website

Summary

Navigation and Ancillary Information Facility

N IF

Making a CK File 3

CK Writer Routines

•  The SPICE toolkit provides the following CK writer routines for
the FORTRAN, C, IDL and MATLAB toolkits, respectively:

–  For Type 1 CK
»  CKW01 / ckw01_c / cspice_ckw01

–  For Type 2 CK
»  CKW02 / ckw02_c / cspice_ckw02

–  For Type 3 CK
»  CKW03 / ckw03_c / cspice_ckw03

–  For Type 4 CK
»  CKW04B, CKW04A, CKW04E (no CSPICE, Icy, or Mice wrappers)

–  For Type 5 CK
»  CKW05 / ckw05_c (no Icy or Mice wrapper)

–  For Type 6 CK
»  CKW06 (no CSPICE, Icy or Mice wrappers)

•  Only the Type 3 writer is discussed in this tutorial
–  Writers for Types 1 and 2 have very similar interfaces
–  Types 4, 5 and 6 are are not commonly used

Navigation and Ancillary Information Facility

N IF

Making a CK File 4

Type 3 Writer Example - 1

•  The following C-language code fragment
illustrates the creation of a Type 3 C-kernel
having a single segment.

ckopn_c (filename, “my-ckernel”, 0, &handle);
/*
 Insert code that properly constructs the
 sclkdp, quats, avvs, and starts arrays.
*/
ckw03_c (handle, begtim, endtim, inst,
 “reference_frame”, avflag, “segment_id”,
 nrec, sclkdp, quats, avvs, nints, starts);

ckcls_c (handle);

Navigation and Ancillary Information Facility

N IF

Making a CK File 5

Type 3 Writer Example - 2

•  handle - file handle for the newly created C-kernel.
•  begtim, endtim - start and stop times in SCLK

ticks for the segment.
•  inst - ID code for the instrument for which the C-

kernel is being made.
•  ref - name of the base reference frame. Must be

one known to SPICE during your program execution.
•  avflag - a SpiceBoolean indicating whether or not

to include angular velocity in the segment.
•  segid - a string identifying the segment. It must be

no more than 40 characters in length.

Navigation and Ancillary Information Facility

N IF

Making a CK File 6

Type 3 Writer Example - 3

•  nrec - number of records in sclkdp, quats, and avvs.
•  sclkdp - monotonically increasing list of times, given

in SCLK ticks, that identify when quats and avvs were
sampled.

•  quats - a list of SPICE quaternions that rotate vectors
from the base frame specified by the ref argument to
the inst frame.
–  m2q_c (C_matrix, quaternion);

•  avvs - angular rate vectors given in the base frame
specified by the ref argument.

•  starts - a list of SCLK ticks indicating the start of
interpolation intervals. They must correspond to
entries in sclkdp.

•  nints - number of entries in starts.

Navigation and Ancillary Information Facility

N IF

Making a CK File 7

Type 3 writer - Making Up Rates

•  One of the easiest ways to accomplish this is to
assume a constant rotation rate between
subsequent quaternions:

 for(k=0; k<(nrec-1); k++) {
 q2m_c (quats[k][0], init_rot);
 q2m_c (quats[k+1][0], final_rot);
 mtxm_c (final_rot, init_rot, rotmat);
 raxisa_c (rotmat, axis, &angle);
 sct2e_c (scid, sclkdp[k], &init_et);
 sct2e_c (scid, sclkdp[k+1], &final_et);
 vscl_c (angle/(final_et-init_et), axis,

 &avvs[k][0]); }

•  Then copy the (nrec-1) value of avvs into the last
element of avvs.

continues on next page

Navigation and Ancillary Information Facility

N IF

Making a CK File 8

Type 3 Writer - Making Up Rates (2)

•  Constructing angular rates in this fashion
assumes that no more than a 180-degree rotation
has occurred between adjacent quaternions.
raxisa_c chooses the smallest angle that
performs the rotation encapsulated in the input
matrix.

•  Other techniques exist, including differentiating
quaternions. Care must be exercised when taking
that approach.

Navigation and Ancillary Information Facility

N IF

Making a CK File 9

MSOPCK

•  msopck is a program for making CK files from orientation
provided as a time tagged, space-delimited table in a text file

•  msopck can process quaternions (SPICE and non-SPICE
flavors), Euler angles, or matrixes, tagged with UTC, SCLK, or
ET

•  msopck requires all program directives be provided in a setup
file that follows the SPICE text kernel syntax

•  msopck has a simple command line interface with the following
usage
msopck setup_file input_data_file output_ck_file

•  If the specified output CK already exists, new segment(s) are
appended to it

Navigation and Ancillary Information Facility

N IF

Making a CK File 10

MSOPCK
List of Setup File Keywords

 LSK_FILE_NAME = 'LSK file'
 SCLK_FILE_NAME = 'SCLK file’ (or MAKE_FAKE_SCLK=‘new SCLK file’)
 FRAMES_FILE_NAME = 'FRAMES file'
 COMMENTS_FILE_NAME = 'file containing comments'
 PRODUCER_ID = 'producer group/person name'
 INTERNAL_FILE_NAME = 'internal file name string'
 CK_SEGMENT_ID = 'segment ID string'
 CK_TYPE = 1, 2, or 3
 INSTRUMENT_ID = CK ID
 REFERENCE_FRAME_NAME = 'reference frame name'
 MAXIMUM_VALID_INTERVAL = interval length, seconds
 INPUT_TIME_TYPE = 'SCLK', 'UTC', 'TICKS', 'DPSCLK', or 'ET'
 TIME_CORRECTION = bias to be applied to input times, seconds
 INPUT_DATA_TYPE = 'MSOP QUATERNIONS', 'SPICE QUATERNIONS',
 'EULER ANGLES', or 'MATRICES'
 QUATERNION_NORM_ERROR = maximum normalization error
 EULER_ANGLE_UNITS = 'DEGREES' or 'RADIANS'
 EULER_ROTATIONS_ORDER = (’axis3’, ’axis2’, ’axis1')
 EULER_ROTATIONS_TYPE = 'BODY' or 'SPACE'
 ANGULAR_RATE_PRESENT = 'YES', 'NO', 'MAKE UP', 'MAKE UP/NO AVERAGING'
 ANGULAR_RATE_FRAME = 'REFERENCE' or 'INSTRUMENT'
 ANGULAR_RATE_THRESHOLD = (max X rate, max Y rate, max Z rate)
 OFFSET_ROTATION_ANGLES = (angle3, angle2, angle1)
 OFFSET_ROTATION_AXES = (’axis3’, ’axis2’, ’axis1')
 OFFSET_ROTATION_UNITS = 'DEGREES' or 'RADIANS’
 DOWN_SAMPLE_TOLERANCE = down sampling tolerance, radians
 INCLUDE_INTERVAL_TABLE = 'YES' or 'NO' (default 'YES')
 CHECK_TIME_ORDER = 'YES' or 'NO' (default 'NO')

Supporting

Kernels/Files

Output CK

Specifications

Input data

Specifications

Optional and
conditional
keywords are
shown in green

Navigation and Ancillary Information Facility

N IF

Making a CK File 11

MSOPCK - Input Details (1)

INPUT_DATA_TYPE = 'SPICE QUATERNIONS'

Input file: TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]

 TIME1 [TIME2] QCOS QSIN1 QSIN2 QSIN3 [ARX ARY ARZ]

INPUT_DATA_TYPE = 'MSOP QUATERNIONS'

Input file: TIME1 [TIME2] -QSIN1 -QSIN2 -QSIN3 QCOS [ARX ARY ARZ]

 TIME1 [TIME2] -QSIN1 -QSIN2 -QSIN3 QCOS [ARX ARY ARZ]

INPUT_DATA_TYPE = 'EULER ANGLES'

Input file: TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

 TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

INPUT_DATA_TYPE = 'MATRICES'

Input file: TIME1 [TIME2] M11 M12 M13 M21 ... M33 [ARX ARY ARZ]

 TIME1 [TIME2] M11 M12 M13 M21 ... M33 [ARX ARY ARZ]

Four Examples

Navigation and Ancillary Information Facility

N IF

Making a CK File 12

MSOPCK - Input Details (2)

•  Quaternions
–  INPUT_DATA_TYPE = ‘SPICE QUATERNIONS’ indicates the quaternions being

used follow the SPICE formation rules(*)
–  INPUT_DATA_TYPE = ‘MSOP QUATERNIONS’ indicates the quaternions being

used follow the traditional AACS formation rules(*)
»  Normally quaternions that come in telemetry are of this type

–  QUATERNION_NORM_ERROR keyword may be used to identify and filter out
input records with quaternions that are not unit vectors

»  It is set a tolerance for comparing the norm of the input quaternion with 1
•  Euler angles

–  All three angles must be provided
–  For the angles provided on the input as

TIME1 [TIME2] ANG3 ANG2 ANG1 [ARX ARY ARZ]

 and rotation axes specified in the setup as
 EULER_ROTATIONS_ORDER = (’axis3’, ’axis2’, ’axis1')

 the matrix rotating vectors from base to the structure frame is computed as
 Vinst = [ANG3]axis3 * [ANG2]axis2 * [ANG1]axis1 * Vref

–  Angles can be provided in degrees or radians

(*) NAIF prepared and provides on request a “white paper” explaining differences between various quaternion styles.

Navigation and Ancillary Information Facility

N IF

Making a CK File 13

MSOPCK - Input Details (3)

•  Angular rates are an optional input. Their presence or absence
must be indicated using the ANGULAR_RATE_PRESENT
keyword

–  If angular rates are provided (ANGULAR_RATE_PRESENT = ‘YES’), they
must be in the form of a 3d vector expressed either in the base frame (less
common) or instrument frame (more common)

»  The ANGULAR_RATE_FRAME keyword must be set to indicate which of
the two is used

–  If angular rates are not provided, the program can either make a CK without
rates (ANGULAR_RATE_PRESENT = ‘NO’), or try to compute rates from the
orientation data by using uniform rotation algorithm implemented in Type 3
CK, either with averaging (ANGULAR_RATE_PRESENT = ‘MAKE UP’) or
without averaging (ANGULAR_RATE_PRESENT = ‘MAKE UP/NO
AVERAGING’) of the rates computed for adjacent orientation data points

–  ANGULAR_RATE_THRESHOLD may be used to identify and filter out input
records with angular rate components that are too large to be real

•  Input data can be tagged with UTC, SCLK, SCLK ticks or ET, as
specified using the INPUT_TIME_TYPE keyword

–  Time tags must not have embedded spaces

Navigation and Ancillary Information Facility

N IF

Making a CK File 14

MSOPCK - Output Details (1)

•  msopck can generate Type 1, 2, or 3 CKs
–  Type 1 is rarely used - only in cases when the input contains very few data

points that are far apart so that interpolation between them makes no sense
–  Type 2 is also rarely used, primarily to package orientation for spinners

»  Normally the input for making Type 2 CKs should contain two times and
the angular rate in each record

–  Type 3 is the most commonly used type because it provides interpolation
between the orientation data points stored in the CK

•  Interpolation intervals are determined based on the threshold
value specified in the MAXIMUM_VALID_INTERVAL keyword

–  The threshold interval is given in seconds
–  A Type 3 CK will allow interpolation between all input points for which the

duration between points is less than or equal to the threshold

•  An additional transformation to be combined with the input
attitude may be specified using OFFSET_ROTATION_* keywords

–  The convention for specification of the offset rotation angles is the same as
for the input Euler angles

–  A vector defined in the base frame is first multiplied by the offset rotation
 Vinst = [ROTinput] * [ROToffset] * Vref

Navigation and Ancillary Information Facility

N IF

Making a CK File 15

MSOPCK - Output Details (2)

•  The time tags may be adjusted by a constant value specified
in seconds using the TIME_CORRECTION keyword

•  The order of input time tags can be checked using the
CHECK_TIME_ORDER keyword.

•  The output CK file contains one or more CK segments
–  Multiple segments are generated if the input data volume is large and

does not fit into the program’s internal buffer (100,000 pointing
records)

–  When the output file has many segments, each segment’s start time is
equal to the stop time of the previous segment, i.e. there are no gaps at
the segment boundaries

•  The Comment area of the output CK contains the following
information:

–  Contents of a comment file, if it was specified using the
COMMENT_FILE_NAME keyword

–  Contents of the setup file
–  Summary of coverage for each segment written to the file, including a

table listing interpolation intervals for segments of Type 2 or 3

Navigation and Ancillary Information Facility

N IF

Making a CK File 16

Terminal Window
$ more msopck_setup.example
MSOPCK setup for predict M'01 CK generation.

==
\begindata
 PRODUCER_ID = ’NAIF/JPL'

 LSK_FILE_NAME = 'naif0007.tls'
 SCLK_FILE_NAME = 'ORB1_SCLKSCET.00001.tsc'
 COMMENTS_FILE_NAME = 'msopck_comments.example'
 INTERNAL_FILE_NAME = 'sample M01 SC Orientation CK File'

 CK_SEGMENT_ID = 'SAMPLE M01 SC BUS ATTITUDE'
 INSTRUMENT_ID = -53000
 REFERENCE_FRAME_NAME = 'MARSIAU'

 CK_TYPE = 3
 MAXIMUM_VALID_INTERVAL = 60
 INPUT_TIME_TYPE = ’SCLK'
 INPUT_DATA_TYPE = 'MSOP QUATERNIONS'

 QUATERNION_NORM_ERROR = 1.0E-3
 ANGULAR_RATE_PRESENT = 'MAKE UP'
\begintext

$

MSOPCK - Example (1)

Navigation and Ancillary Information Facility

N IF

Making a CK File 17

Terminal Window
$ more msopck_comments.example

Sample Mars Surveyor '01 Orbiter Spacecraft Orientation CK File
===

Orientation Data in the File
--

 This file contains sample orientation for the Mars Surveyor ‘01

 Orbiter (M01) spacecraft frame, 'M01_SPACECRAFT', relative
 to the Mars Mean Equator and IAU vector of J2000, 'MARSIAU', inertial
 frame. The NAIF ID code for the 'M01_SPACECRAFT' frame is -53000.

Status
--

 This file is a special sample C-Kernel file created by NAIF to illustrate
 MSOPCK program. This file should not be used for any other purposes.

...

MSOPCK - Example (2)

Navigation and Ancillary Information Facility

N IF

Making a CK File 18

Terminal Window
$ more msopck_input.example
0767491368.064 -0.24376335 0.68291384 0.28475901 0.62699316

0767491372.114 -0.24249471 0.68338563 0.28591829 0.62644323
0767491373.242 -0.24204185 0.68355329 0.28633291 0.62624605
0767491374.064 -0.24194814 0.68358228 0.28641744 0.62621196

0767491380.064 -0.24012676 0.68424169 0.28807922 0.62543010
0767491386.064 -0.23830473 0.68489895 0.28973563 0.62464193
0767491392.064 -0.23648008 0.68555126 0.29139303 0.62384833
0767491398.064 -0.23465389 0.68620253 0.29304524 0.62304745

0767491404.064 -0.23282999 0.68684150 0.29470173 0.62224580
0767491404.114 -0.23277293 0.68686688 0.29475362 0.62221455
0767491405.242 -0.23231585 0.68702790 0.29516507 0.62201253

0767491410.064 -0.23100059 0.68748174 0.29634561 0.62143935
0767491416.064 -0.22917353 0.68811325 0.29799308 0.62062853
0767491422.064 -0.22734161 0.68874177 0.29963482 0.61981412
0767491428.064 -0.22551078 0.68936246 0.30128030 0.61899473

0767491434.064 -0.22367453 0.68998299 0.30291779 0.61816987
0767491436.114 -0.22300583 0.69021050 0.30351804 0.61786298
0767491438.011 -0.22251770 0.69037871 0.30395477 0.61763631

...

MSOPCK - Example (3)

Navigation and Ancillary Information Facility

N IF

Making a CK File 19

Terminal Window
$ msopck msopck_setup.example msopck_input.example msopck_example_ck.bc

MSOPCK Utility Program, Version 3.0.0, 2003-05-05; SPICE Toolkit Ver. N0057
...
<comment file contents>

...
<setup file contents>
...
**

RUN-TIME OBTAINED META INFORMATION:
**
PRODUCT_CREATION_TIME = 2004-04-29T12:17:55

START_TIME = 2004-04-27T00:00:05.516
STOP_TIME = 2004-04-27T23:59:56.275
**
INTERPOLATION INTERVALS IN THE FILE SEGMENTS:

**
SEG.SUMMARY: ID -53000, COVERG: 2004-04-27T00:00:05.516 2004-04-27T23:59:56.275
--

 2004-04-27T00:00:05.516 2004-04-27T20:05:26.282
 2004-04-27T20:11:20.278 2004-04-27T23:59:56.273

MSOPCK - Example (4)

Navigation and Ancillary Information Facility

N IF

Making a CK File 20

PREDICKT

•  prediCkt is a program for making CK files from a set of
orientation specification rules, and schedules defining when
these rules are to be followed

•  prediCkt has a simple command line interface
•  prediCkt requires orientation and schedule specification to

be provided in a setup file that follows the SPICE text kernel
syntax

•  prediCkt requires the names of all supporting kernels --
SPK, PCK, etc -- be provided in a meta-kernel (a “furnsh
kernel”)

•  prediCkt is available only from the Utilities link of the NAIF
webpages

Navigation and Ancillary Information Facility

N IF

Making a CK File 21

PREDICKT - Usage

•  prediCkt has the following command line arguments
 prediCkt -furnish support_data

 -spec ck_specs

 -ck outfile

 -tol fit_tolerance [units]

 -<sclk|newsclk> sclk_kernel

•  ‘-furnish’, ‘-spec’ and ‘-ck’ are used to specify the input meta-
kernel, input attitude specification file and output CK file

•  ‘-tol’ is used to specify the tolerance to which the orientation
stored in the CK should match the specified attitude profile

•  ‘-sclk’ or ‘-newsclk’ specify the name of an existing SCLK or
the new “fake” SCLK to be created for use with the output CK

Navigation and Ancillary Information Facility

N IF

Making a CK File 22

PREDICKT - Furnsh and Spec Files

•  A “FURNSH” kernel lists SPICE kernels that are
to be used by prediCkt to determine geometry
needed to compute orientations

•  A prediCkt attitude specification (spec) file
following the text kernel syntax is used to
provide three types of information:

–  Specification of dynamic directions
–  Specification of orientations based on these directions
–  Specification of the schedules defining when those

orientations should be followed

•  The contents of the FURNSH kernel and the spec
file are included in the comment area of the
output CK file

Navigation and Ancillary Information Facility

N IF

Making a CK File 23

PREDICKT - Directions

•  Dynamic directions can be of the following types:
–  Based on ephemeris (position vectors, velocity vectors)
–  Fixed with respect to a reference frame (expressed as a Cartesian vector

or specified by RA and DEC)
–  Towards sub-observer point
–  Based on the surface normal and lines of constant latitude or longitude
–  Based on other, already defined directions (rotated from them,

computed as cross products using them, etc)

•  Example: these two sets of spec file keyword assignments
specify nadir and spacecraft velocity directions for the M01
spacecraft

DIRECTION_SPECS += ('ToMars = POSITION OF MARS -')
DIRECTION_SPECS += ('FROM M01 -')

DIRECTION_SPECS += ('CORRECTION NONE')
DIRECTION_SPECS += ('scVelocity = VELOCITY OF M01 -')
DIRECTION_SPECS += ('FROM MARS -')

DIRECTION_SPECS += ('CORRECTION NONE')

Navigation and Ancillary Information Facility

N IF

Making a CK File 24

PREDICKT - Orientations

•  An orientation is specified by:
–  defining that one of the frame’s axes (+X,+Y,+Z,-X,-Y,-Z) points

exactly along one of the defined directions
–  defining that another of the frame’s axes points as closely as

possible to another defined direction
»  The third axis is the cross product of the first two

–  specifying the base frame with respect to which the orientation of
this “constructed” frame is to be computed

•  Example: these spec file keyword assignments
specify the nominal nadir orientation for the
THEMIS instrument, flown on the M01 spacecraft

ORIENTATION_NAME += 'CameratoMars'
PRIMARY += '+Z = ToMars'
SECONDARY += '+Y = scVelocity'
BASE_FRAME += 'J2000'

Navigation and Ancillary Information Facility

N IF

Making a CK File 25

PREDICKT - Schedules (1)

•  A schedule is defined by specifying a series of
time intervals during which a given orientation is to
be followed

–  For each interval for a given CK ID the spec file defines the
orientation name, start time, and stop time (as Ephemeris Times)

•  Example: these spec file keyword assignments
specify a schedule with a single window during
which M01 (Mars Odyssey) will yield nadir-pointed
orientation for the THEMIS instrument

CK-SCLK = 53
CK-SPK = -53
CK-FRAMES += -53000
CK-53000ORIENTATION += 'SOLUTION TO M01_THEMIS_IR = CameratoMars'
CK-53000START += @2004-FEB-10-00:00
CK-53000STOP += @2004-FEB-15-00:00

Navigation and Ancillary Information Facility

N IF

Making a CK File 26

PREDICKT - Schedules (2)

•  In the example on the previous slide:

–  the CK-FRAMES keyword specifies the CK ID to be used in the output CK
»  This ID is incorporated into the keywords defining the schedule

intervals

–  the CK-SCLK keyword specifies the ID of the SCLK to be used in creating
the CK

–  the CK-SPK keyword specifies the ID of the object, the position of which
is used in applying light time correction when orientation is computed

–  “SOLUTION TO” construct specifies that although the orientation is
sought for the M01 spacecraft frame (ID -53000), it is computed for the
camera frame (M01_THEMIS_IR) and then transformed to the spacecraft
frame

Navigation and Ancillary Information Facility

N IF

Making a CK File 27

Terminal Window
$ cat m01_map_nadir.prediCkt
\begindata

 DIRECTION_SPECS += ('ToMars = POSITION OF MARS -')
 DIRECTION_SPECS += ('FROM M01 -')
 DIRECTION_SPECS += ('CORRECTION NONE')

 DIRECTION_SPECS += ('scVelocity = VELOCITY OF M01 -')
 DIRECTION_SPECS += ('FROM MARS -')
 DIRECTION_SPECS += ('CORRECTION NONE')

 ORIENTATION_NAME += 'CameratoMars'
 PRIMARY += '+Z = ToMars'

 SECONDARY += '+Y = scVelocity'
 BASE_FRAME += 'J2000'

 CK-SCLK = 53

 CK-SPK = -53
 CK-FRAMES += -53000
 CK-53000ORIENTATION += 'SOLUTION TO M01_THEMIS_IR = CameratoMars'

 CK-53000START += @2004-FEB-10-00:00
 CK-53000STOP += @2004-FEB-15-00:00
\begintext

PREDICKT - Example (1)

Navigation and Ancillary Information Facility

N IF

Making a CK File 28

Terminal Window
$ cat m01_map_nadir.furnsh
\begindata

 KERNELS_TO_LOAD = ('naif0007.tls'
 'm01_v26.tf'

 'mar033-5.bsp'
 'm01_map_rec.bsp'
 'm01.tsc')

\begintext
$ prediCkt -furnish m01_map_nadir.furnsh -spec m01_map_nadir.prediCkt -ck m01_map_nadir.bc -tol
0.01 degrees -sclk m01.tsc

Begin Segment: 1 --- SOLUTION TO M01_THEMIS_IR = CameratoMars

Constructing Segment
From: 2004 FEB 10 00:00:00.000
To : 2004 FEB 15 00:00:00.000

 Percentage finished: 0.0%
 Percentage finished: 5.0 % (50 quaternions)

 ...
 Percentage finished: 95.0 % (925 quaternions)
$

PREDICKT - Example (2)

